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Sampling in a two-dimensional plane 
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Abstract. The conventional way to measure the two-dimensional geometry of a surface is 
to map it using a rectangular, grid pattern. This paper explores the trigonal method of 
mapping and compares the results with the rectangular as well as the theoretical values 
which should be obtained for a random surface. 

1. Introduction 

Surfaces are rough. This roughness dominates many of the applications of engineering 
surfaces. In recent years this awareness has given rise to great interest in measuring 
surfaces in order to predict the performance and preferably optimise it. Because the 
geometrical parameters of fundamental importance tend to be somewhat complicated 
the current trend is to measure the surface using digital techniques. The parameters 
of interest are rarely those used to control the manufacturing process such as R,, the 
arithmetic average value. Functional parameters tend to be more associated with peaks 
and valleys on the surface. An example is the peak curvature in contact theory 
(Greenwood and Williamson 1966) and the slope of the surface in optical reflection 
(Welford 1977). Of course these parameters do not usually refer to those obtained 
from a single profile or cross section of the surface but to the complete surface: the 
two-dimensional characteristics. For a completely anisotropic surface measured across 
the lay the two are the same, but in general they are not. This has resulted in the 
growth of techniques which can scan over the whole surface to enable the true geometry 
to be revealed. Until recently this has been difficult for more than one reason; firstly 
the large storage necessary and secondly the accurate scan mechanism. To some extent 
both problems have been eased but there are still many things which require clarifica- 
tion. One of these is the pattern of scanning required for digital analysis and another 
is the change in parameter values which occur with different numerical models and 
yet another most significant effect is the way in which the parameters change with 
sampling. These problems were first tackled by Whitehouse and Arehard (1970) and 
Whitehouse and Phillips (1978, 1982). The first and simplest question was that of 
determining the surface parameters from a single profile of the workpiece. Parameters 
such as peak height, curvature and surface slope were derived using the 3-point method 
to describe a peak. In this a peak is said to exist if the central ordinate (digital) 
measurement of three consecutive ones stood out as the highest. In the first paper a 
simple exponential correlation function model was assumed for the surface for two 
reasons: the first undeniably being ease of calculation, the second because by the very 
nature of random manufacturing processes the probability of a grit hitting any spot is 
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Poissonian i.e. first-order Markov, indicating at least an exponential envelope to the 
correlation function (Hamed et al 1978) and therefore relevant to current thinking on 
fractal surfaces (Jordan et al 1983). The case for a general autocorrelation function 
rather than an exponential was considered by Whitehouse and Phillips for profiles. 
This analysis was extended (Whitehouse and Phillips 1982) to two dimensions in which 
the 3-point analysis naturally extends itself to five point. Again a general well behaved 
autocorrelation function was considered and specific examples chosen to illustrate the 
variability of the parameters with sample interval and correlation model. In this case 
the whole surface is covered by a rectangular grid of measurements similar to that 
used in the measurement of straightness. Analytical expressions for the summit proper- 
ties (two-dimensional peak) were worked out as before and were compared with the 
individual profile properties on the one hand and purely continuous properties on the 
other. For these comparisons correlation functions corresponding to a large number 
of surfaces were used. For simplicity the surfaces were assumed to be isotropic and 
Gaussian in height distribution to enable the theory of truncated random variables 
(Phillips 1984 and the appendix of Whitehouse and Phillips 1982) to be used. A more 
straightforward account of this area of work has recently been given by Greenwood 
(1984). It has to be noted here that future work in this subject will have to take into 
account cases where the autocorrelation function is not definable in the form given by 
equation (4.1) discussed later. 

The two sampling patterns so far investigated are the obvious and simplest ones 
to use, but they are not necessarily the best. The objective in this paper is to examine 
another sampling pattern and investigate the practical and theoretical implications. 

The various sampling plans can best be visualised by means of a circle whose centre 
is an ordinate, and around the circumference of which are k evenly spaced ordinates. 
For profile sampling k is two and the angular spacing is T. The rectangular grid 
sampling corresponds to k = 4  and a spacing of ~ / 2 .  The former is referred to as 
having diagonal symmetry and the latter tetragonal. 

In  this paper another value of k is considered, namely k = 3 (trigonal symmetry). 
Analytical expressions are obtained for a number of surface parameters using the 
methods outlined before and some practical issues will be discussed, especially with 
respect to the measurement of fine surfaces. 

2. Sampling schemes in a two-dimensional plane 

A number of possible sampling schemes for sampling in a two-dimensional plane will 
now be presented. They are illustrated in figure 1. In all cases the distance between 
measurements is h. 

Firstly there is sampling along a straight line (from a proj le  of the surface). This 
sampling scheme only takes measurements in one dimension of the plane. However, 
it is presented for completeness and because it was the first case considered by 
Whitehouse and Archard (1970) and Whitehouse and Phillips (1978). It is illustrated 
in figure l ( a )  with k = 2 and 0 = T. 

Secondly a sampling scheme could be used which would take measurements at the 
vertices of a hexagonal grid. The summit properties could be defined using four 
ordinates, i.e. the measurement at a vertex and the three adjacent ordinates at a distance 
h from the chosen vertex. This 'would be the case when k = 3 and 0 = $T, and will be 
referred to as the trigonal symmetry case. 
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Figure 1. Sampling patterns for the ( a )  3-point (digonal), ( b )  4-point (trigonal) and ( c )  
5-point (tetragonal) numerical models with a spacing h between ordinates. 

In order to produce such a hexagonal grid it would be necessary to sample along 
parallel lines separated alternately-by a distance $h and h. The spacing between 
ordinates along a line would be J3h  but the position at which the first ordinate is 
measured would be 0 for the (4j-3)th and 4jth lines and +J3h for the (4j-2)th and 
(4j-  1)th lines, for j s  1. This is illustrated in figure l (6) .  Alternatively one could 
sample along parallel lines a distance f J3h  apart, but this would involve a different 
position for the first ordinates and the spacing between ordinates would alternately 
be h and 2h. 

Thirdly there is sampling on a square grid. This was considered by Whitehouse 
and Phillips (1982) and Greenwood (1984) and will be referred to as the tetragonal 
symmetry case. It is illustrated in figure l (c )  with k = 4  and 8 =$T. The sampling 
scheme requires sampling along parallel lines separated by a distance h and with a 
spacing between ordinates along a line of h. 

In this paper results will be given for the hexagonal grid or trigonal symmetry. For 
purposes of comparison the cases when k = 2,3  and 4 will be considered. The notation 
of these papers will be that used below. I f  the m random variables X = ( X , ,  X , ,  . . . , X , )  
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have a joint multivariable Gaussian (normal) distribution with mean p and variance- 
covariance matrix V then this is denoted by X - N [p,  VI. Also the convention of 
using an upper case letter for a random variable and a lower case letter for a realisation 
of the random variable will be followed. 

3. The hexagonal grid in the trigonal symmetry case 

Results have been obtained for the probability density function and expectation (mean) 
of peak (or summit) height, the density of summits and the expected peak (or summit) 
curvature in the cases when k = 2 by Whitehouse and Phillips (1978) and when k = 4 
by Whitehouse and Phillips (1982). The results for the hexagonal grid ( k  = 3) in the 
trigonal symmetry case will now be given. These can be obtained from the general 
results of truncated random variables given in Phillips (1984) and in the appendix of 
Whitehouse and Phillips (1982). 

For measurements with four ordinates let zo be the height of the central ordinate 
and sl ,  s2 and s, be the differences between this ordinate and the three adjacent 
ordinates at a distance h. The ordinate zo will be defined to be a 4-point summit if sl, 
s2 and s, are all positive. By analogy with the 3-point and 5-point definitions of 
peak (or summit) curvature the discrete definition of 4-point curvature is 

(3.1) c = 2( s1 + s2 + s,)/3 h 2 .  

Assuming that the surface height measurements have a multivariate Gaussian 
distribution and that the surface is isotropic then 

(Zo? (2-2Pi)-”*(Sir S2, S , ) ) -  N O ;  V4I, (3.2) 

l d d d  

d a l a  
d u a l  

with 
d = (i-ipl)1’2 

and 

a=~(1 -2p ,+p , , ) / ( l -p , ) ,  (3.5) - 
where p1 = p (  h )  and p J 3  = p(J3h)  and p ( t )  is the correlation coefficient between 
ordinates a distance t apart. 

If T4 is the event ( S ,  > 0, S2 > 0, S,  > 0)) then the distribution of 4-point summit 
height is the conditional distribution of Zo given that T4 has occurred. This can be 
obtained using the results of the appendix of Whitehouse and Phillips (1982) with m = 3, 

(3.6) x = (2  -2pl)-”2(s1, S2, S3)’, 

v=v3= a 1 a ,  [ b  : I] 
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so that 
A = 1+2a. (3.9) 

Then the probability density function of the 4-point summit height distribution is given 
by 

where 

(3.10) 

(3.11) 

(3.12) 

(@(“)(y’: V )  is the cumulative distribution function at y of the n-dimensional multivari- 
ate Gaussian distribution with zero expectation and variance-covariance matrix V. 
4(x) is the probability density function of the univariate standard Gaussian distri- 
bution.) 

The denominator of (3.10) is the orthant probability which gives the probability 
that an ordinate is a 4-point summit using the nomenclature of Cheng (1969). Hence, 
from David (1953), 

p r ( ~ , ) = @ . ‘ ~ ’ ( o ;  v3)=;-37r)-’ cos-’(a). (3.13) 

The expected (mean) 4-point summit height is given by 

where 

Hence 

(3.14) 

(3.15) 

(3.16) 

The distribution of the height 2, of a 4-point summit conditional on a curvature 
C is Gaussian with an expectation given by 

and variance given by 

(3.17) 

(3.18) 
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This is the same as the distribution of the height 2, of an ordinate conditional on 
the 4-point curvature but not conditional on the ordinate being a summit. This is a 
result which holds for the three values of k = 2, 3 and 4. This is because v k  is of the 
form 

1 d l '  
" = ( d l  Y)' (3.19) 

where is a correlation matrix with a constant row (column) sum. This result enables 
the expected (k+ 1)-point peak (or summit) curvature to be obtained from the expected 
(k+ 1)-point peak (or summit) height. 

Hence the expected 4-point summit curvature is given by 

(3.20) 

It is also possible to obtain the following simple connection between the variances 
of (k+ 1)-point peak (or summit) height and curvature: 

(3.21) 

This relation was shown by Whitehouse and Phillips (1978) for k = 2 (with Z, = Yo) 
and by Greenwood (1984) for k = 4. 

So by the application of the theory of Gaussian truncated random variables it has 
been possible to obtain connections between the expectations and variances of 4-point 
summit and curvature ( k  = 3). 

4. The effect of sampling interval and limiting results 

It is vital to investigate the variation of parameters with h because it is due to the large 
number of possible differences in sampling interval that the scatter of measured values 
of parameters occur between investigators. 

The distributions of 4-point summit height and curvature (k = 3) have been derived 
in terms of correlation coefficients between ordinates. These two correlation cosfficients 
are p l ,  for ordinates a distance h apart, and p ~ ~ ,  for ordinates a distance J 3 h  apart. 
If the surface is isotropic and the autocorrelation function is p (  t ) ,  then p1 = p(  h )  and 
p~~ = p(J3h) .  So p,  and pd3 will vary as h varies, depending on the shape of the 
autocorrelation function of the surface. 

Results for the summit height have been obtained by Nayak (1971) for the con- 
tinuous surface. So it is possible to compare his results with those obtained for the 
discrete results of § 3 as the sampling interval h converges to zero. 

To do this it is necessary to make assumptions about the behaviour of the autocorre- 
lation function p (  h )  near the origin. It will be assumed that 

p(  h )  = 1 + D2h2/2! + D4h4/4!+ o( h4) (4.1) 
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where D2 < 0, D, > 0 and 

7 = -D2(D4)-1/2< ( y 2 .  (4.2) 

D2 and 0, are the second and fourth derivatives of the autocorrelation function at 
the origin. 

Comparison will be made for estimates of parameters measuring peak and summit 
properties of the surface. This will be done for the three cases of 3-, 4- and 5-point 
estimates corresponding to k = 2, 3 and 4, respectively. 

The first parameter that will be considered is the density of peaks or summits. 
These parameters are known for a continuous random Gaussian surface and were 
given for peaks as 

D,,,, = $ T - ' ( D ~ / - D ~ ) ' / ~  (4.3) 

D,,, = (67rh)-'(D3/-D2) (4.4) 

by Rice (1944) and for summits as 

by Nayak (1971). 
The density of the peaks or summits is the number of peaks per unit length or 

summits per unit area, using the (k+ 1)-point definition of peak for k = 2 and summit 
for k = 3 and 4. The expected density of peaks or summits is given by the product of 
pr( Tk+l) and the density of ordinates, where Tk+l is the event (SI > 0,. . . , S, > 0) and 
S, to s k  are the differences between the central ordinate and the k adjacent ordinates 
at a distance h. 

The limiting behaviour of pr( Tk+l) as h tends to zero, the density of ordinates and 
the limit of the expected density of peaks (or summits) are given in table 1. The limits 
are given in terms of the limiting results for a continuous surface given by (4.3) and 
(4.4). It is seen that the density of peaks (when k = 2 )  converges to the continuous 
limit. This is not the case for summits (when k = 3 and 4). In both cases the density 
would be overestimated by 73% and 31% respectively. 

The second parameter which will be considered is the average peak (or summit) 
height. The results are known for a continuous random Gaussian surface and were 
given for peaks as 

E(ZI continuous peak) = ( 7r/2)'IZ 7 (4.5) 

by Rice (1944) and Whitehouse and Phillips (1978) and for summits as 

E ( Z  I continuous summit) = ~ T - I ' ~  7 
= 1.801 (-i T ) " ~ v  

by Nayak (1971). So the average summit height is 80% higher than the average peak 
height. 

Again the expected height of peaks (when k = 2) converges to the continuous limit 
for peaks on a profile. However, this is not the case for summits (when k = 3 and 4) 
as is seen in table 2. In both cases the expected summit height is underestimated by 
13% for the 4-point case and by 6% for the 5-point case. 

Because the conditional distribution of height given curvature is Gaussian with a 
mean which is a linear function of curvature, for all values of S the expected summit 
curvature will converge in the same manner as the expected summit height (see equation 
(3.17) and the discussion following equation (3.18)). 
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Table 1. Expected summit (peak) density. 

Expected density 

pr( T,+J Limiting 
Limiting behaviour Density of behaviour 

k a s h + O  ordinates Limit as h + 0 as h + m  

Three points 2 
1 
h 
- 

Four points 3 -(-)h2 -h D4 
87r -D2 

1 - 0.333 $ J( 2) = Dpcak 3h h 

x - h2 (-2,) 

1 0.192 - - 4 . D,,, = 1.7320,,, 
3 m  3 J 3  h 2  

0.770 
h2 

-- - 

-h[7r+2sin-l($)+4&] 1 0.2 
47r 5h2-  hZ 

x D,,, = 1.306 D,,, 

To study the effect of the change of the sampling interval h on the digital measure- 
ments of an isotropic surface it is necessary to specify a model for the autocorrelation 
function of the surface. For the model to fit in with observed autocorrelation functions 
of surfaces it would be desirable to have a negative exponential function with a 
multiplicative periodic function. Whitehouse and Philips (1978) 'smoothed' the 
exponential-cosine function to give a function which was smooth at the origin. An 
alternative approach was used by Whitehouse and Phillips (1982) which replaced the 
negative exponential function by another function that is smooth at the origin but 
behaves like the negative exponential function for large t. Both of these correspond 
with the autocorrelation functions of many typical practical surfaces. 

Table 2. Expected summit (peak) height E(Z,l Tk+'), 

k h = O  h = m  

4 
Three points 2 (f) I i 2 7  = 0.555 - 7 

J;; 

Four points 3 2 ($)"'7 = 1.559 [ ( : ) I i 2  71 

-- ,; - 0.846 

2 & [ 1 +;sin-'($)] = 1.029 

= 0.866 [ 71 

Five points 4 gm ~ = 1 . 6 8 8 [ ( f ) " ~  7 7 1  ~ [ g - 2 c o s - ' ( ~ )  1 =1.163 
[ 7r + 2 sin-'($) + 4,121 2J- 3 7r 

= 0.938 [ $71 
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This autocorrelation function is given by 

p ( h )  = sech[&hA( e)] cos[2dhA( e)], 
where 

m (-lye 
A( e )  = s e c h ( 2 d )  + 2 

r=02~{6J2+[$(2r+1)]2} sinh[.rr(2r+ l)/8e]’ 

(4.7) 

(4.8) 

where h is the sampling interval. The values of 8 used are 0 and $. For this autocorrela- 
tion function 

D, = -(;T)’[ 1 + (&)’][A,( e)]*  (4.9) 

and 

D4 = (f7r)75 +6(48)2+ (4e)4][A,( (4.10) 

The expected density of summits is given in figures 2 and 3 and the expected height 
of peaks or summits is given in figures 4 and 5 for the autocorrelation function for 
8 = 0  and i. 

The expected 4-point and 5-point density of summits differ little as the sampling 
interval h exceeds one correlation length. For smaller sampling intervals the 4-point 
expected density of summits exceeds that for the 5-point expectation. 

In contrast to the expected density the 4-point and 5-point expected height of 
summits differ fairly consistently as the sampling interval varies. The limits of the 
5-point expectation are greater than the 4-point expectation as the sampling interval 
approaches both zero and infinity. 

5. Discussion 

The technique of using discrete measurements has application in fields where it is 
expensive or time consuming to obtain large amounts of data. The reason for this 

’ O‘ 

t 0 8  
L 

6 r 0 . 6 5 4 5  14pointsI 

h+0.4937 15 points) 

Sample interval in terms of correlation Length 

Figure 2. The variation of the expected density of 3-point peaks and 4- and 5-point summits 
with a spacing h between ordinates. The autocorrelation function is shown with 0 = 0. 
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0 1.0 2.0 3 0  40 5.0 

Sample interval in  terms of correlation length 

Figure 3. The variation of the expected density of 3-point peaks and 4- and 5-point summits 
with a spacing h between ordinates. The autocorrelation function is shown with 0 = f .  

Figure 4. The variation of the expected height of 3-point peaks and 4- and 5-point summits 
with a spacing h between ordinates. The autocorrelation function is shown with 8 = 0. 

paper was to try and see whether taking measurements using a non-conventional 
sampling scheme would produce any advantages to outweigh the disadvantage of 
complexity. The advantages considered were less information to collect, easier analyti- 
cal derivation of theoretical results and simpler numerical methods. 

The sampling schemes that were considered all had the property that the information 
could be collected by sampling along parallel straight lines with a fixed sampling 
interval. (It might be necessary however to have a variable starting point, though this 
would follow a regular pattern.) This ensured that if a measurement (ordinate) was 
chosen when using a particular scheme it would always have the same number of 
adjacent ordinates at a distance h (the chosen sampling interval), provided the chosen 
ordinate is not on the boundary. 
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Figure 5. The variation of the expected height of 3-point peaks and 4- and 5-point summits 
with a spacing h between ordinates. The autocorrelation function is shown with 0 = i. 

From the point of view of simplicity of sampling mechanism the square grid ( k  = 4) 
in the tetragonal case is the best. In this case the spacing between the lines is constant 
and equal to the sampling interval h along the line. Also the starting points for the 
sampling all lie along a straight line. However other schemes do have advantages to 
offset their complexity. 

The trigonal ( k  = 3) case has the advantage that measurements of slope can be 
taken in three directions as opposed to two for the tetragonal ( k  = 4) case. Though 
the theoretical results have been restricted to the consideration of isotropic surfaces it 
may still be of practical value to be able to check the assumption of isotropicity in 
more than two directions. 

The trigonal ( k  = 3) case can be obtained by an alternative sampling method but 
this involves alternating the sampling interval from h to 2h. This alternative method 
is equivalent to rotating the grid through 7r/6. 

From the point of view of collecting digital information the trigonal ( k  = 3)  case 
is preferable as ‘less’ information is collected. The density of ordinates is (4/3&)h2 
( =  0.77/h2) compared with l / h 2  for the square grid ( k  =4).  So in the same area 23% 
less ordinates would be needed. The advantage of this would need to be weighed 
against the disadvantages. 

Another advantage of the trigonal ( k  = 3) case is that fewer ordinates are used 
when defining properties of the extremities. To check the definition of a 4-point summit 
only three conditions have to be obeyed, as opposed to four conditions for the 5-point 
summit. It should also be noted that some properties of the discrete defined random 
variables, such as the limiting value of ( k +  1)-point summit (or peak) height as the 
sampling interval tends to infinity, are simply a function of the numerical definition 
and are independent of the surface being measured. 

Any discrete measurement of a surface must lose information compared with a 
complete ‘map’ of the surface. This is inevitable! However, ideally, any discrete 
measurement should produce results which converge to the results for the continuous 
surface as the sampling interval h tends to zero. 

For sampling along a straight line ( k = 2 )  it is seen that the discrete results do 
converge to those for the continuous profile. They do not, however, converge to the 
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results of the two-dimensional surface. For example Dteak = 0.83 Os,,, so that assuming 
independent measurements at right angles would produce a limit which is 17% too 
small. 

For two-dimensional measurements when sampling with k = 3 or 4, the limiting 
results for expected summit density and expected summit height do not converge to 
the results for the continuous surface. In the case of expected summit density the limit 
is 73% too large for k = 3  and 31% too large for k = 4 .  Again for expected summit 
height the case k = 3 is worse than for k = 4 but the differences are not so large. This 
suggests that some surface parameters may be estimated by discrete methods fairly 
well but others may not. For the case of average profile slope all three sampling 
schemes agree (for k = 2, 3 and 4) but this is, of course, an essentially one-dimensional 
parameter. 

In order to consider the merits of sampling schemes it is necessary to study their 
theoretical properties. By doing this it is possible to obtain new insights into the 
general problem. This is possible only by using models which lead to tractable 
mathematics. The three sampling schemes with k = 2, k = 3 and k = 4 considered in 
this paper have been chosen because they have a common property which enables 
them to be investigated using analytical results previously obtained in theoretical 
statistics. Using the trigonal ( k  = 3 )  symmetry case leads to a simpler mathematical 
model than for the tetragonal ( k  = 4) symmetry case, as this reduces the dimension by 
one. However, taken as a whole it may be that a hexagonal sampling plan where k = 6 
offers the maximum benefit in terms of the three criteria mentioned above. One message 
which has emerged from this exercise is that the conventional grid pattern method of 
sampling is not necessarily the best. The implications of this in general pattern 
recognition and image analysis scanning systems are likely to be significant. 

The work presented here has concerned primarily the effect of sampling patterns 
on the values of parameters obtained from measured surfaces. It has not therefore 
been aimed at investigating the actual nature of surfaces in general. Well behaved 
correlation functions have been assumed and certain specific examples have been used 
to give the researcher an idea of the value of parameter changes that might be expected 
to occur on typical measured surfaces. This has been justified by the fact that to some 
extent all instruments used for obtaining the data have a short wavelength filter 
incorporated whether it be a stylus or a light spot which tends to force the correlation 
function at the origin to be smooth. However, there can be no denying that the very 
nature of random manufacture encourages the presence of exponential and other 
misbehaved characteristics in the correlation function. The effect of sampling patterns 
on such fractal (multiscale) surfaces will be the subject of further work. 
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